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It is common practice in the statistical analysis of phonetic data to draw conclusions on the basis of statistical sig-

nificance. While p-values reflect the probability of incorrectly concluding a null effect is real, they do not provide

information about other types of error that are also important for interpreting statistical results. In this paper, we

focus on three measures related to these errors. The first, power, reflects the likelihood of detecting an effect that

in fact exists. The second and third, Type M and Type S errors, measure the extent to which estimates of the mag-

nitude and direction of an effect are inaccurate. We then provide an example of design analysis (Gelman & Carlin,

2014), using data from an experimental study on German incomplete neutralization, to illustrate how power, mag-

nitude, and sign errors vary with sample and effect size. This case study shows how the informativity of research

findings can vary substantially in ways that are not always, or even usually, apparent on the basis of a p-value

alone. We conclude by repeating three recommendations for good statistical practice in phonetics from best prac-

tices widely recommended for the social and behavioral sciences: report all results; design studies which will pro-

duce high-precision estimates; and conduct direct replications of previous findings.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Statistical analysis is often used to reason about scientific
questions based on a data sample, with the goal of determin-
ing “which parameter values are supported by the data and
which are not” (Hoenig & Heisey, 2001, p. 4). Researchers in
phonetics frequently reach such conclusions based on signifi-
cance: the probability, or p-value, of obtaining an effect of the
observed size (or greater), if the true effect were zero.

For example, consider a study of the effect of speech rate
on Voice Onset Time (VOT) on short-lag stops in a particular
language (e.g. Kessinger & Blumstein, 1997). The researcher
fits a statistical model (say, a simple linear regression) in which
the dependent variable is VOT, and the regression coefficient
of interest b1 is the slope of the regression line, representing
an estimate of how a unit change in speech rate impacts
VOT. A t-test is then conducted to assess whether this slope
is different from zero. Judging from the literature, many
researchers would conclude that there is an effect of rate if this
difference is significant (i.e. if p < 0:05), and that if the differ-
ence is not significant ðp P 0:05Þ, VOT is unaffected by rate.

This focus on the p-value stems from a desire to avoid
incorrectly rejecting the null hypothesis, when it is in fact true.
This is obviously to be avoided, because we do not want to
claim that an effect exists when it does not. However, p-
values provide only limited information when interpreting stud-
ies, particularly if we are trying to interpret a study in relation to
other work. To continue with the speech rate example, imagine
two studies of the effect of speech rate on VOT, one of which
finds a significant effect ðp 6 0:05Þ and one of which does
not ðp > 0:05Þ. Given only the p-values, we are not in a posi-
tion to assess which result is more plausible, since the p-
value itself does not measure the probability that speech rate
has a non-null effect on VOT. Moreover, the difference
between the p-values may not itself be statistically significant
(Gelman & Stern, 2006; Nieuwenhuis, Forstmann, &
Wagenmakers, 2011), so we cannot even conclude that there
is a meaningful difference between the two studies.

In addition to interpreting significant effects, researchers
are often interested in interpreting the lack of a significant
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effect, a so-called “null result”. The temptation is often to con-
clude that if a coefficient is not significantly different from
zero, that it does not have an effect on the dependent vari-
able. Concluding from non-significance that there is no effect
of an experimental manipulation is a well-known statistical fal-
lacy; the p-value is not the probability that the null hypothesis
is true, but rather the probability of observing an effect of a
given magnitude, or larger, assuming that the null hypothesis
is true. In order to avoid this pitfall, it is sometimes taught, or
propagated in practice, that null results cannot be interpreted
at all. However, this is not strictly speaking the case: null
results can sometimes give information about likely parameter
values or effect size—arguably the central goal of data anal-
ysis—but determining whether or not this is the case requires
considering information other than the p-value of a test
statistic.

In this paper, we discuss additional quantities that can
give useful and complementary information to p-values: the
probability of rejecting the null hypothesis assuming that it
is false (statistical power) as well as errors of magnitude
and sign in estimating effect size (Type M and Type S
errors: Gelman & Tuerlinckx, 2000; Gelman & Carlin,
2014). Using simulation studies based on real experimental
data, we illustrate three reasons researchers in phonetics
should take into account power and effect size in addition
to significance:

(1) Depending on statistical power, a non-significant result can still
be informative.
(2) Errors in estimates of effect size can be substantial even when
p-values are low.
(3) Estimates of effect size improve with power, and can be robust
even when p-values are higher than a conventional threshold, e.g.
a ¼ 0:05.

Using a case study of so-called incomplete neutralization
(hereafter IN), we illustrate how (1)–(3) can affect conclusions
drawn with respect to two questions, which are arguably
always our goal in interpreting research studies: what can we
conclude about likely values of a parameter from a single study
(Q1), as well as from a body of studies (Q2)?

This exercise provides an example of design analysis (or
design calculations; Gelman & Carlin, 2014): the use of statis-
tical tools to reason about likely outcomes (= parameter val-
ues) of replications of a study—which is generally of greater
interest than the statistical analysis of a single experiment.2

Our focus here will be on design analysis for mixed-effects
regression models, because these methods have become
increasingly common for phonetic data analysis, and also
because they can be somewhat more technically and conceptu-
ally challenging to implement. However, we note that the basic
points (1)–(3) apply to most statistical methods commonly used
to analyze phonetic data, including t-tests, classical ANOVA,
classical regressions (without random-effect terms), and
GAMMs.
2 For example, in a study of whether there is a speech rate effect on VOT for lenis stops
in English, we are less interested in whether the coefficient for this effect is significantly
negative ðp < 0:05Þ than in what can be concluded about the true value of the speech rate
effect. By points (2) and (3), these are not the same thing.
None of the points we raise about power and effect size are
novel (see e.g. Brysbaert & Stevens, 2018; Button et al., 2013;
Cohen, 1988; Colquhoun, 2014; Gelman & Carlin, 2014;
Gigerenzer, Krauss, & Vitouch, 2004; Meehl, 1967;
Nieuwenhuis et al., 2011; Westfall, Kenny, & Judd, 2014;
Vasishth & Nicenboim, 2016; Judd, Westfall, & Kenny, 2017;
Vasishth & Gelman, 2017, among others), but they are not typ-
ically addressed in interpretation of phonetic data. We believe
that greater attention to these dimensions would improve the
quality of phonetic research, both in terms of research design
as well as interpretation. We hope the technical illustration pro-
vided in this paper will be of particular use to those researchers
who are interested in performing power calculations and
design analysis in the mixed-model context, but are unsure
how to go about doing so.

The remainder of this paper is organized as follows. Sec-
tion 2 provides some background on power, effect size, and
sign and magnitude errors, including the practical issue of
how to compute them. Section 3 gives a case study of incom-
plete neutralization in word-final German stops, focusing on
points (1)–(3), in the context of interpreting individual studies
(Q1) and a body of studies (Q2), using power and effect size
considerations in addition to significance. Finally, in Section 4
we conclude with some more general observations and
recommendations.

To facilitate the use of power and effect size error calcula-
tions in phonetic research, code and data files for carrying
out all analyses in this paper, as well as further worked exam-
ples, are archived as an Open Science Foundation project
(Kirby & Sonderegger, 2018a).
2. Background

In this section, we define power and effect size before
turning to considerations of power calculation, magnitude
and sign errors, and design analysis. While there exist large
literatures on each of these topics—in particular for the
behavioral and social sciences—they are not usually dis-
cussed as part of mainstream statistical analysis of phonetic
data. (For psycholinguistic data on the other hand, Vasishth
& Nicenboim (2016) cover similar topics, and our presentation
is indebted to theirs.) We aim here to briefly summarize rele-
vant concepts for our case study, and give relevant refer-
ences where interested readers can follow up to learn
more. Our case study (Section 3) provides a worked example
showing one way these concepts can be applied to the anal-
ysis of phonetic data.
2.1. Power

In considering whether there is in reality an effect of a
covariate or experimental manipulation, there are two essential
types of errors a researcher can make: falsely concluding there
is an effect when none exists (a Type I error, or “false positive”),
or falsely concluding there is no effect when one in fact exists
(a Type II error, or “false negative”). Type I errors are arguably
more familiar, and everyday statistical practice places consid-
erable emphasis on avoiding them. If a term is found to be sta-
tistically significant, many researchers would conclude from
this that a Type I error is unlikely. The Type I error rate of a
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study is normally abbreviated as a, while the Type II error rate
is b.3

Power, or one minus Type II error, is the probability of the
statistical test correctly rejecting the null hypothesis when it
is false. Like significance, power depends on several factors:
the sample size, the true effect size, the acceptance threshold
ðaÞ, and the amount of variability in the data. All else being
equal, a significant result is less likely to be found for an exper-
iment with a smaller sample, where the effect is small, where a
more stringent cutoff is used (lower a), and/or where the vari-
ance is high. For a given statistical test, power is a function
of these four quantities, and power calculations consist of
determining power given values of the four quantities, or deter-
mining the necessary value of one quantity to achieve a given
power level. Typically power calculations for research planning
focus on sample size, because other determinants of power
are less accessible (e.g. true effect size is determined by the
phenomenon itself).

Note that while power and Type I error are related, one does
not determine the other, because of the roles of effect size,
sample size, and variability. A common critical value for power,
analogous to a ¼ 0:05 for rejecting the null, is b ¼ 0:2, giving
power of 80%.

Cohen (1988, 1992) and Hallahan and Rosenthal (1996)
provide thorough but accessible introductions to power and
related issues. Snijders (2005), Gelman and Hill (2007, Ch.
20), and Judd et al. (2017), as well as references therein, dis-
cuss power for mixed-effects models. Vasishth and Nicenboim
(2016) provide a discussion of power in the context of linguistic
data.
2.2. Effect size

The term effect size refers to any measure of the size of an
effect. Unstandardized estimators, such as regression coeffi-
cients, are the simplest quantifications of effect size. Variables
in a multiple regression model can be easily scaled to make
different regression coefficients comparable (e.g. Gelman &
Hill, 2007, Section 4.2).

Effect size can also refer to one of many standardized mea-
sures which quantify the magnitude of a treatment effect in a
way that allows comparison across studies, or between effects
in the same study. There are two broad families of effect size
measures for data where the dependent variable is continu-
ous: measures of association/variance explained (such as

R2, or the g2 measure commonly used for ANOVAs), and stan-
dardized differences in means (see Kline, 2013, Ch. 5). We
focus on the most common measure in the latter family:
Cohen’s d, defined as the difference between group means
3 In what follows, we refer to both “significance levels” (p-values) and Type I and Type II
errors. Strictly speaking, this is incoherent: there are no p-values in the Neyman-Pearson
hypothesis-testing paradigm, and notions such as power and alternative hypotheses are
absent from Fisher’s (Fisher, 1956) significance-testing framework. However, in practice
these traditions are often conflated into a procedure sometimes called null hypothesis
significance testing (NHST), where researchers discuss “significance levels” (a Fisherian
concept) but treat p like an a threshold in the Neyman-Pearson framework, rejecting H0

when p is less than some pre-specified value. In the tradition of late-period Fisher (1956),
we recommend reporting exact p-values, effect sizes, and confidence intervals, rather than
accepting or rejecting hypotheses on the basis of an a threshold; but at the same time, we
believe that the Neyman-Pearson idea of power, as a way of formalizing precision, can also
be informative. For an overview of these issues with some historical context, see
Gigerenzer et al. (2004).
divided by a standard deviation appropriate for the data given
the experimental design (Cohen, 1988) (which intuitively
reflects the “amount of variability” in the data).

For mixed-effects models, different options exist for calculat-
ing standardized effect sizes, because these models contain
several parameters (variance components) capturing different
kinds of variability. Westfall et al. (2014) and Judd et al.
(2017) show how to calculate Cohen’s d as a function of exper-
imental design for certain mixed-effects designs, and Gelman
and Hill (2007, Ch. 20–21) demonstrate more general
simulation-based effect size measures for mixed-effect models.

Like power, (observed) effect size is partially independent
from significance. One point we wish to emphasize here is that
accuracy of effect size estimates does not automatically follow
from (non)-significance of model terms. This means that some
null results can give meaningful information about effect size,
and reported effect sizes can be unreliable even for significant
results, depending on power. We will illustrate these points fur-
ther below.

For more on measures of effect size, see Cohen (1988,
1992), Kline (2013), and the references above.
2.2.1. Type M and Type S errors

Let bx denote the true size of an effect of interest, and b̂x the
estimated effect size when an experiment is done to estimate

it. Because b̂x is a random variable, which will be different each
time the experiment is run, the estimated effect size can be
incorrect relative to the true effect size, in either magnitude
or sign. Gelman and Carlin (2014) define two corresponding
measures of error of the estimated effect size, across different
replications of the same experiment:

� The expected Type M error (or exaggeration ratio) is the expected

value of jb̂x=bx j: the extent by which the magnitude of the effect
is exaggerated.

� The Type S error is the probability that the estimated effect has the

wrong sign ðsignðb̂xÞ – signðbxÞÞ.

Gelman and Carlin (2014) define Type M and Type S error
as conditional on significance: how often we will be wrong
about the direction or magnitude of an effect if only non/signif-
icant results are taken into account. It is also possible to con-
sider unconditional Type M and Type S error—what these
values would be if all results are considered, without regard
to significance. Conditional Type M/S error are relevant for
what can be concluded from any single study (our Q1), since
the result of the study will reach significance or not. Uncondi-
tional Type M/S error are relevant for what can be concluded
from an ensemble of studies (our Q2), assuming that both sig-
nificant and non-significant results have been reported. We
consider both conditional and unconditional Type M/S errors
in our case study (Section 3).

For unbiased and normally distributed estimates, the rela-
tionship between Type M and Type S error and power can
be reasonably approximated. Generally speaking, both types
of estimates scale roughly with power; but Type M error
increases faster than Type S error as power decreases. As
demonstrated by Gelman and Carlin (2014), when power is
low, Type M and S error can be surprisingly high, even for sta-
tistically significant results (see also Button et al., 2013;
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Ioannidis, 2008). Conversely, when power is high, Type M and
S error will remain low. The existence of Type M and Type S
errors means that it is not always the case that significant find-
ings are “correct”, in the sense of providing accurate estimates
of the sign and/or magnitude of the effect of interest.4

For more on both Type M and Type S error, see Gelman and
Tuerlinckx (2000), Gelman and Carlin (2014), Vasishth and
Nicenboim (2016).

2.3. Power calculations and design analysis

Conducting a power analysis involves calculating power as
a function of the experimental design and the data distribution.
Power calculations are often carried out a priori, as part of
experimental design, for example to assess the sample size
necessary to detect an effect of a particular size. Observed
or post hoc power analysis—determining the power of an
experiment that has already been conducted using the
observed effect size—has (rightly) often been dismissed as
pointless (Cox, 1958; Hoenig & Heisey, 2001; O’Keefe, 2007;
Senn, 2002). This is because observed power can be com-
puted directly from the p-value (given the study design,
observed effect size, and variance); thus, observed power
gives no additional information once the p-value is known
(Hoenig & Heisey, 2001; Lenth, 2007; O’Keefe, 2007).5

However, there are situations in which power calculations
made after the experiment has been conducted can still be
informative. In particular, retrospective design analysis
(Gelman & Carlin, 2014), where a range of plausible effect
sizes are considered, can be helpful in addressing both our
Q1 (what can be learned from a single study) as well as Q2
(what can be learned from a body of studies of a given topic).

There are two key differences between retrospective design
analysis and an observed power analysis. First, in design anal-
ysis one considers a range of plausible effect sizes, which may
or may not include the observed value. Second, the focus of a
design analysis is not only to assess the power of the study,
but also to determine the Type M and S errors. Design analysis
can therefore tell us what we can learn from a study with a
given design and sample size about likely values of a param-
eter of interest, regardless of whether or not the value of the
parameter was statistically significant in our particular study.

Arguably, the most difficult part of design analysis (or a priori
power analysis for that matter) is determining what range of
effect sizes to consider. While the true effect size is generally
unknown (that’s why the researcher is conducting the experi-
ment in the first place!), delimiting a range of plausible effect
sizes is usually possible. For example, suppose you are study-
ing incomplete neutralization of aspirated, ejective, and plain
stops in Klamath, which are said to be neutralized in final posi-
tion (Blevins, 1993). The effect of interest is the degree to
which word-final consonant laryngeal class affects preceding
vowel duration. While there is a literature on incomplete neu-
tralization effects, there may be no previous phonetic work
on Klamath, or on neutralization of an ejective/plain/aspirated
contrast. A lower bound on plausible non-zero effect sizes
4 Cf. Kirby and Sonderegger (2018b), where it is somewhat misleadingly suggested that
so long as an effect is significant, it can be trusted.

5 Intuitively: if a significant effect was/was not found, you will compute that power must
have been high/low to give an effect of the observed size.
could be obtained by a survey of the incomplete neutralization
literature, to give a sense of how small vowel length contrasts
are before they are considered perceptually neutralized (prob-
ably 4–15 ms), or using the just-noticeable-difference for vowel
duration (about 5 ms: Nooteboom & Doodeman, 1980). An
upper bound could be obtained by surveying studies of how
laryngeal class affects previous vowel duration word-finally in
languages without final neutralization (Chen, 1970), and taking
the highest values from reliable studies (�30 ms). Thus, a
range of about 4–30 ms would be reasonable. Even for areas
where less is known from previous related work, it should usu-
ally be possible to establish plausible effect sizes within an
order of magnitude; Gelman and Carlin (2014, pp. 7–8) provide
some useful guidelines.

2.4. Techniques

2.4.1. Calculating power

Tools for calculating power are now widely available for a
number of experimental settings, including those typically used
in phonetic research. Broadly, these fall into two types:

Option 1: Closed-form solutions. For many simple tests
such as differences between sample means, power can be
found by specifying sample size, effect size, and Type I error
threshold a, as shown in textbook treatments of power analysis
(e.g. Chow, Shao, & Wang, 2008). Although most statistical
analyses phoneticians are now doing are more complicated
than such simple cases, they can still provide a rough estimate
of power for a given term by approximating the relevant effect
sizes and degrees of freedom.

For example, consider some hypothetical German incom-
plete neutralization data, of the type to be considered in our
case study, in which vowel duration is measured before phono-
logically voiced and voiceless consonants. We can conduct a
two-tailed test between two independent samples, with the
goal of determining whether the group means are significantly
different at the 0.05 level. Assume that we have n ¼ 32 partic-
ipants, 16 in each group, with normally distributed group
means of l1 ¼ 50 ms and l2 ¼ 45 ms. For ease of exposition,
we further assume that the population standard deviation r is
known and shared across groups; in this case, r2

1 ¼ r2
2 ¼ 100.

This means we can use a z-test, instead of the more common
t-test. The test statistic is then:

z ¼ l1 � l2ffiffiffiffiffiffi
2r2

n

q

Assuming normally distributed means, the formula for power is

1� b ¼ Uðz � z1�a=2Þ þUð�z � z1�a=2Þ;
where U is the standard normal cumulative distribution function
with a mean of 0 and a standard deviation of 1, and z1�a=2 is the
critical value of the test statistic corresponding to a two-tailed
test with significance level a (here, z1�a=2 ¼ 1:96). For a fixed
n1 ¼ n2 ¼ 16, this corresponds to power of just 0.29:

z ¼ 50� 45ffiffiffiffiffiffiffiffiffiffi
2�100
16

q ¼ 5ffiffiffiffiffiffi
200
16

q ¼ 1:41214

1� b ¼Uð1:41214� 1:96Þ þUð�1:41214� 1:96Þ
¼0:2926065þ 0:000370134

¼0:2929766
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Doubling the sample size increases power to 0.52. To achieve
power of 0.8, 63 participants per group would be required.

Carrying out such calculations by hand, as we have here, is
usually not necessary. Most statistical software packages pro-
vide functions to perform power analyses for all basic types of
hypothesis tests, such as comparison of proportions, chi-
squared tests, t-tests, and the z-test example illustrated above.
Some examples using the pwr library (Champely, 2017) for R
(R Core Team, 2016) are provided in the OSF Project accom-
panying this article (Kirby & Sonderegger, 2018a).

It is possible to extend these simple calculations to more
complex designs, including the mixed-effects regression mod-
els now common in phonetic data analysis. A recent example
is that of Westfall et al. (2014), who propose analytic methods
of power analysis for designs with a single fixed-effect term
and crossed random factors, helpfully implemented in a user-
friendly online calculator ( http://jakewestfall.org/power/). Such
tools are invaluable for prospective power analysis and exper-
imental design, and we encourage researchers to make rou-
tine use of them to insure that experimental work is of high
power (see Brysbaert & Stevens, 2018 for worked examples).
However, such approaches usually make simplifying assump-
tions, such as balanced data and no covariates, which do not
hold for many actual phonetic studies. This means that for the
purposes of design analysis, a different or complementary
approach is useful.

Option 2: Simulation. For many studies which include com-
plex designs, unbalanced observations, and multiple covari-
ates, developing closed-form solutions for power can be
difficult or impossible. In these cases, power can be approxi-
mated to a more or less arbitrary degree of accuracy through
Monte Carlo simulation. The chief advantages of this approach
are (a) flexibility and (b) the ability to more accurately reflect
the underlying structure of the statistical model. Simulation
also helps us to understand our ability to detect effects of arbi-
trary size, as it is simple to generate underlying data sets in
which a given effect does or does not exist. The caveat is that
simulation-based approaches to power are closely tied to the
specific model and data used (see Section 3.5.2 below). For
some other examples of simulation-based approaches to
understanding statistical properties of experimental design
see e.g. Baayen, Davidson, and Bates (2008), Barr, Levy,
Scheepers, and Tily (2013), Gelman and Hill (2007), Judd
et al. (2017), Jäger, Engelmann, and Vasishth (2017,
Appendix B), Vasishth and Nicenboim (2016), Vasishth and
Gelman (2017), Winter (2015).

Simulation-based design analysis requires three
components:

1. M, a statistical model either fitted to previous data or specified
using known values;

2. D, a dataset of interest;
3. bx , an effect size for predictor of interest x.6

The basic procedure is then as follows:

(a) Use M to simulate dependent variable values for D given bx ;
6 Somewhat confusingly, b is typically used as shorthand for both the Type II error rate
as well as for regression coefficients. Here we designate regression coefficients as bx for
clarity.
(b) Re-fit M to D;
(c) Repeat steps (a) and (b) many (hundreds or thousands of)
times.

The percentage of time that the fitted model finds a signifi-
cant effect of x approximates power as the number of simula-
tions increases. We illustrate this procedure in Section 3.2
below.

A number of software packages are now available for sim-
ulating power in mixed models, including the simr (Green &
MacLeod, 2016), clusterpower (Reich & Obeng, 2013),
and longpower (Donohue, Gamst, & Edland, 2016) pack-
ages for R. There are also non-open-source packages such
as MLPowSim (Browne, Lahi, & Parker, 2009), which features
an option to output R code. These packages differ in the types
of data and models they allow, with simr allowing for the most
generality at the time of writing. While we use simr functions
in the study reported here, we try to emphasize general princi-
ples rather than particular software packages.

It is important to note that the general methodology
described above requires various choices to be made at the
point of implementation. For example, step (a) requires speci-
fying how to incorporate random effects (e.g. conditioning on
fitted values, versus simulating new values), and one might
want to use an existing dataset D or have a procedure for sim-
ulating a dataset of interest. Software and package developers
will have necessarily made such decisions, but they may not
be appropriate for all use cases. The researcher can either just
use the decisions made in a particular implementation (as we
do here with simr), or make their own decisions by coding
simulation-based power analysis from scratch (as in an earlier
version of this work: Kirby & Sonderegger, 2018b). Arnold,
Hogan, Colford, and Hubbard (2011) provide discussion of
the general methodology of simulation-based power calcula-
tions for mixed models; see also Gelman and Hill (2007, Ch.
20) and Hox (2010, Ch. 12).
2.4.2. Calculating Type M & Type S errors

Type M and Type S errors are less familiar concepts, so
there are not many pre-existing tools to calculate them.
Gelman and Carlin (2014) provide a calculator for the simple
case of a t-test, which can be applied as an approximation to
effects in more complex models (like Option 1 for power,
above). Otherwise, one must proceed by simulation. Type M
and Type S error can be calculated in the same simulation
as power simply by keeping track of the percentage of cases
where the predicted and true effect size have the same sign,
and the mean magnitude of the ratio of predicted to true effect
size. This is relatively straightforward using pre-existing simu-
lation power calculation functions; we provide an example in
code in the OSF project accompanying this article (Kirby &
Sonderegger, 2018a), used in the case study in Section 3.2
below.
3. Case study: incomplete neutralization

By way of illustration, we take as a case study the issue of
the incomplete neutralization of word-final voicing in languages
like German, Catalan, or Dutch. An example from German is
given in (1). In final position, the voicing contrast in stops is

http://jakewestfall.org/power/


Table 1
Parameters swept in simulation study.

Parameter Range Step

Number of subjects ðnsÞ 6–26 4
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traditionally described as neutralized, leading to apparent
homophony between Rat ‘council’ and Rad ‘wheel’.

(1)

Number of items ðniÞ 10–30 5
Number of repetitions ðnr Þ 1–6 1
True effect size ðbxÞ 2–10 1
a. Rat /ʁaːt/ > [ʁaːt] ‘council’, Räte [ʁeːtɐ] ‘councils’
b. Rad /ʁaːd/ > [ʁaːt] ‘wheel’, Räder [ʁeːdɐ] ‘wheels’

Word-final neutralization of this type has long been used as a
textbook example of an exceptionless phonological rule.
Beginning in the early 1980s, however, this picture was blurred
by phonetic studies claiming to show a small but significant
difference in the phonetic realizations of underlyingly voiced
and voiceless obstruents, usually in terms of their effect on
the durations of the burst, closure, and/or preceding vowel.

Here, we will not take a position on whether or not incom-
plete neutralization is “real”, or the theoretical implications of
its (non-) existence. Rather, we are interested in IN because
this literature contains both studies which find statistically sig-
nificant evidence for acoustically incomplete neutralization
(Mitleb, 1981a, 1981b; Port & O’Dell, 1985; Port & Crawford,
1989; Roettger, Winter, Grawunder, Kirby, & Grice, 2014)
alongside those that do not (Fourakis & Iverson, 1984;
Jassem & Richter, 1989). Moreover, effects which are found
are always with a positive sign, but with differing magnitudes.

What are we to make of this body of findings? We will show
that studies showing non-significant effects are primarily low-
or medium-powered, while the most highly powered study
(Roettger et al., 2014) finds a significant effect. Taken together,
however, this body of studies provides good estimates of both
the magnitude and the direction of IN effects.

3.1. Data and method

We explored the ramifications of different power regimes
by conducting simulations using data from an experiment
examining incomplete neutralization of word-final laryngeal
contrasts in German (Roettger et al., 2014). The effect of
interest is how vowel duration depends on the phonological
voicing specification of the following (word-final) consonant.
We examine how power and Type M/S errors for the effect
of interest depend on aspects of the study (number of sub-
jects, items, and repetitions) by varying these aspects in our
simulations.

The case study considered here is Experiment 1 of Roettger
et al. (2014).7 These authors recorded 16 native speakers of
German producing singular forms of nonword nominals (e.g.
[ɡoːp]) in response to auditory primes containing either a voiced
or a voiceless variant (e.g. [ɡoːbə] or [ɡoːpə]). Phonologically, the
singular form of each item in a prime pair is expected to be iden-
tical. Each speaker produced one repetition of each target item
in response to 24 such critical pairs. A linear mixed-effects
model was used to estimate the duration of the vowel preceding
the stop as a function of the stop’s underlying voicing specifica-
tion, alongside a number of control predictors. The model
included by-subject and by-item random intercepts along with
random slopes for voicing. The results indicated that speakers
produced longer vowels before underlyingly voiced stops, as
assessed by a statistically significant difference in the voicing
7 We thank Timo Roettger and Bodo Winter for sharing their dataset with us, as well as
for permission to make this dataset publicly available.
coefficient in a likelihood-ratio test. The magnitude of the voicing
effect was estimated to be 8.6 ms (SE = 2.03 ms).

In order to undertake our design analysis, we cannot simply
use these numbers, but instead need a range of plausible
effect sizes. For German IN, published estimates have ranged
from around 4 ms (Port & Crawford, 1989) to over 20 ms
(Mitleb, 1981b), though most studies find 4–14 ms. We might
also consider estimates from other languages, such as Dutch
(3.5 ms: Warner, Jongman, Sereno, & Kemps, 2004) or Rus-
sian (6 ms: Dmitrieva, Jongman, & Sereno, 2010). Together,
these estimates provide us with a reasonable range in which
to explore the ramifications of effect size on power in a
mixed-model setting.

3.2. Simulation procedure

We simulated a range of datasets by varying sample and
effect size to explore their effects on power (Table 1).8 Sample
size was varied by altering the number of subjects ðnsÞ, number
of items ðniÞ, and number of repetitions ðnr Þ over a range of val-
ues those found in the IN literature. Effect size ðbxÞ was varied
from 2 to 10 ms. Although previous work suggests that values
in the 10–20 ms range are also possible, here we focus on the
lower end of the range, in order to more easily illustrate the dif-
ferences between different power regimes, and because pub-
lished effect sizes are likely to be inflated (Ioannidis, 2008;
Button et al., 2013; Szucs & Ioannidis, 2017). In addition, while
varying residual variance and amount of variability among sub-
jects and items also affect power, here we elected to hold these
factors constant in the interest of expositional clarity.

For a given set of parameter values ðbx ; ns; ni ; nr Þ, a single
simulation run was performed by the general procedure
described in Section 2.4.1. M was taken to be the linear
mixed-effects model fitted to the original Roettger et al. data,
with effect size of following consonant voicing replaced by bx.
In each simulation run, D was constructed as follows:

1. Choose a set of subjects:
� If ns < 16 (the number of subjects in the original dataset), sam-

ple (without replacement) a random subset of subjects.
� If ns P 16, concatenate subjects from the original dataset to

make a list of size ns.
2. Choose a set of items in a similar fashion to the set of subjects

(using ni instead of ns), relative to the 24 items in the original
dataset.

3. Combine the chosen subjects and items into subject/item pairs, and
concatenate the subsets of the dataset corresponding to each sub-
ject/item pair, making a temporary dataset.

4. Concatenate this temporary dataset nr times, to make D. This cor-
responds to a design where all subjects produce all items, possibly
multiple times.
8 For details of how these factors affect Type I error, see Barr et al. (2013), Matuschek,
Kliegl, Vasishth, Baayen, and Bates (2017), Winter (2015).
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Next, M was used to simulate dependent variables for D
given bx , and M is re-fit to D, using functions from the simr
package (Green & MacLeod, 2016); see the OSF project asso-
ciated with this article for code and details (Kirby &
Sonderegger, 2018a).9 We then assess the significance of the
consonant voicing term in the resulting model ðpconsÞ using a
likelihood ratio test.10 We store pcons, as well as the estimated

effect size b̂x and the true effect size ðbxÞ. By performing nsims

runs for each set of parameter values ðbx ; ns; ni ; nr Þ we obtain
estimates of power (the fraction of runs where pcons < 0:05),

Type M error (mean value of jb̂x=bxj), and Type S error (the frac-

tion of runs where signðb̂xÞ– signðbxÞÞ for these parameter val-
ues. We can also estimate 95% confidence intervals for each
quantity, showing the uncertainty resulting from only using
nsims < 1 runs.
9 The technically-minded reader may wonder why our simulation procedure includes the
step of constructing a new dataset by choosing random subsets of subjects and items. This
is slightly more complex than the simple cases presented in most simulation-based power
tutorials (e.g. the simr vignette), where new subjects and items are generated using the
random-effect parameters of M rather than explicitly constructing a new dataset. The
reason is that the Roettger et al. dataset contains covariates—independent variables other
than the term of interest (voicing)—so re-fitting M requires choosing covariate values for
each row of the new dataset D. One can either simulate covariate values (as in MLPowSim:
Browne et al., 2009), or simply duplicate the covariate values for each subject-item pair.
While both approaches have advantages, our code uses the latter. An important
consequence is that in steps (1)–(2) above, we only use subsets of subjects and items
such that the same model used to fit the original dataset can be fitted. For example, if the
first random subset of items only contains items with bilabial place of articulation, we
sample a new subset, since the original model fits a place of articulation control variable
with three values (bilabial, alveolar, velar).
10 For more on how model comparison strategies impact power, see Kirby and
Sonderegger (2018b).
We performed simulations with nsims ¼ 1500, which appears
sufficient to estimate power and Type M error reasonably accu-
rately, but Type S error would be better estimated with higher
sample sizes (see Figs. 4–7 below, especially the bottom
row of Fig. 5).

3.3. Results

Before proceeding, we must emphasize that our discussion
is in an important sense narrowly applicable to the Roettger
et al. (2014) data, because power and Type M/S error esti-
mates are highly dependent on particular properties of the
dataset (see Section 3.5.2). As such, Fig. 1 does not present
accurate power estimates for a given number of subjects/
items/repetitions for an arbitrary study. Our discussion also
mostly considers the effect of overall sample size on power
and Type M/S error, without distinguishing between the differ-
ent effects of subjects, items and repetitions, but as a general
rule in phonetic experiments it is more important to have addi-
tional items than additional repetitions (Winter, 2015).

3.3.1. Power

Fig. 1 shows the results of these simulations, for an illustra-
tive subset of parameter values: how power (on the y-axis) var-
ies as a function of the true effect size bx (on the x-axis) for
different sample sizes. (Fig. 8 in the Supplementary Materials
shows the full set of results.) Each curve in the figure repre-
sents a different study design, with different choices for the
number of subjects, items, and repetitions. This type of plot
can be used to determine the power of the experiment as a
function of the true effect size (which, in general, is not known
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to the analyst). The general pattern is as expected: as the sam-
ple size and the true size of the effect increase, so too does
power.

3.3.2. Type M error

Fig. 2 shows how Type M error varies as a function of the
true effect size bx for the same data set, again for a subset
of parameter values. (Fig. 9 in the Supplementary Materials
shows Type M error for the full set of simulations.).

Type M error is shown conditioned on significance (i.e. cal-
culated only for runs with significant or non-significant effects),
and unconditioned. We focus here on the conditioned results,
as any single study to be interpreted by a researcher falls into
one of these cases. For any set of parameters, Type M error is
lower for non-significant results than for significant results, and
thus Type M error unconditioned on significance lies between
the two.

For studies with high power, Type M error is relatively low
for significant effects (i.e. the exaggeration ratio �1), and
below 1 for non-significant effects. Intuitively, this is because
when power is high a significant result is likely to be “correct”,
while for a non-significant result to obtain, the effect size must
have been underestimated by chance. As power decreases
(smaller ns; ni ; nr, or bx), effect size magnitude tends to be
overestimated for significant effects, especially if they are
small. Intuitively, this is because when power is low, significant
results often come from obtaining an inflated effect size that is
large enough to cross the a threshold. Interestingly, when Type



11 Although the words in this study were not organized into pairs, the corresponding
power calculation is very similar. Note that we are considering only t-tests conducted
across all speakers—which Fourakis and Iverson (1984) focus on—and not those
conducted within individual speakers.
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M error is calculated over all runs, it is usually near 1. This
means that on average, estimated effect size is not overly
inflated if both non-significant and significant results are con-
sidered (except when power is very low).

3.3.3. Type S error

Fig. 3 shows the mean Type S error rate as a function of the
true effect size bx for the same data set, again with only a sub-
set of parameter values shown (Fig. 10 in Supplementary
Materials shows Type S error for the full set of simulations).
A run was flagged for a Type S error if the parameter estimate
was of the incorrect sign, regardless of the magnitude of the
error. As for Type M errors, Type S error rates are shown cal-
culated conditioned on significance, and unconditioned. Once
again, for high-powered designs Type S error is minimized
(close to zero), but as power decreases, the chance of an esti-
mate having the wrong sign increases substantially. Unlike for
Type M error, however, this is less of a problem for significant
than for non-significant estimates, because Type S error is
always lower for significant estimates for any choice of param-
eters (and thus unconditioned Type S error is between the
two). Intuitively, Type S error is lowest for significant results
because it is very unlikely to estimate an effect size that is both
significant and has the wrong sign, relative to the true effect
size.

3.4. Discussion: interpreting individual studies

Recall that we are interested in two main questions: (Q1)
What are we licensed to conclude on the basis of an individual
study? and (Q2) What are we licensed to conclude from a body
of studies? To gain some intuition for the patterns in Figs. 1–3
with respect to these two questions, we will first consider three
regimes in detail, corresponding to low, medium, and high
sample sizes. These regimes roughly correspond to three
studies from the existing IN literature. We refer to these
regimes as “low power”, “mid power”, and “high power” for
exposition, since relative power is the important difference
between them. (Instead of sample size, we could have varied
the amount of variability in the data, to make the same general
points.) However, it should be remembered that the actual
power in each regime depends on the true effect size, and thus
power in the “high power” regime can be arbitrarily small for
small enough true effect size, and so on.

For each regime, we pose the following question. Suppose
we replicated the Roettger et al. study with a different sample
size; what should we conclude in case of different outcomes
(Q1)? Our discussion of these regimes illustrates points 1
and 2 posed in the Introduction: depending on statistical
power, a non-significant result can still be informative; and
errors in effect size can be substantial even when p-values
are low. We then show how non-significant results of an indi-
vidual study can under some circumstances offer useful infor-
mation about effect size (point 3 in Introduction), before turning
to Q2.

3.4.1. Low-power regime

To illustrate a low-power regime, we select the power curve
from simulations with 6 subjects, 10 items, and 1 repetition per
item (Fig. 4, red line). In this regime, power is always below
50%, far below the 80% cutoff, regardless of effect size
(assuming that the effect is 610 ms). However, the logic of
interpretation differs depending on the statistical significance
of the result:

� If we find a significant result ðp < 0:05Þ, we may conclude that
observing an effect of this magnitude, or larger, is unlikely to have
occurred if the true contribution of bx is in fact zero.

� If we do not find a significant result, we should not be surprised, but
we cannot interpret this lack of effect as evidence in favor of any-
thing: a non-significant result ðp P 0:05Þ is likely to occur whether
there is in reality a true effect of 610 ms (low power) or not (high
p-value).

In a low-powered study, then, a non-significant result is not
informative, in the sense that it cannot be interpreted as refut-
ing the hypothesis that there is an influence of the covariate of
interest on the dependent variable.

In terms of the IN literature, a possible analog is the “elicita-
tion condition” study of Fourakis and Iverson (1984), with 4
subjects and 6 repetitions; t-tests are reported for subsets cor-
responding in our terms to 1–2 items, and none of these tests
are significant.11 Approximate power calculations for these t-
tests can be carried out using the information in their Table 2;
even assuming a 10 ms true effect size (much larger than that
reported), power is below 0.35 for all tests. Given what we might
reasonably assume about the true size of the effect, the null
result of Fourakis and Iverson (1984) does not provide evidence
to “falsify the claim that final obstruent devoicing is not neutraliz-
ing in German”, neither can it be claimed that “the traditional
position that German devoicing constitutes phonologically
irrecoverable merger is fully supported” (Fourakis & Iverson,
1984, p. 149). When power is this low, a null result does not
by itself contribute to our understanding of the phenomenon
under study.

However, even if we do find a significant effect in a low-
power regime, we should not assume that it can automatically
be trusted. This is because the likelihood of committing a Type
M or Type S error is much higher when power is low, as can be
seen in Fig. 5 (red lines): statistically significant results from
low-powered studies are virtually guaranteed to have an effect
size inflated in magnitude, and possibly with the wrong sign, a
phenomenon sometimes known as the “winner’s curse”
(Ioannidis, 2008; Button et al., 2013).

In the IN literature, a possible example of the winner’s curse
is the study of Mitleb (1981a, pp. 87–89), who found very large
differences in preceding vowel duration between German
word-final phonemically voiced and voiceless stops compared
to other studies: 34 ms for bisyllabic words, and 23 ms for
monosyllabic words, with small p-values in both instances
ðp < 0:001Þ. For each word type, Mitleb’s design corresponds
in our terms to ns ¼ 10, ni ¼ 4, and nr ¼ 4. Although our simu-
lations do not cover this small a number of items, we can see
by extrapolating from the second rows of Figs. 2 and 3 that if
the true effect size were 610 ms, Type M error for a significant
result with this design would be substantially above 1, while
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Type S error would remain near 0. Thus, Mitleb’s finding is con-
sistent with a much smaller true effect size, and the observed
effect size is probably exaggerated due to low power.
3.4.2. Mid-power regime

The mid-power regime is illustrated with simulations of 10
subjects and 2 repetitions each of 15 items (Fig. 4, green line).
In this regime, power is above the 80% mark only for the lar-
gest effect sizes considered.

� A significant result can be interpreted as unlikely to have occurred
by chance. However, as seen in Fig. 5, Type M and Type S errors
can still be fairly high, depending on true effect size. For significant
findings in particular, the effect sizes from mid-powered studies are
almost certain to be inflated on average (although they will usually
have the correct sign: see Fig. 5 bottom row).

� The interpretation of a null result is still not straightforward under
this regime, as it depends heavily on the effect size. If we have rea-
son to believe the true bx is, say, 10 ms or higher, we may reason-
ably expect to have detected it. Therefore, not finding a significant
effect can be interpreted as evidence that if an incomplete neutral-
ization effect exists, it is probably smaller than 10 ms. Note that this
is not the same as saying we have evidence that there is no effect;
rather, this is a statement about our ability to detect an effect of a
given size.

A possible example from the IN literature is the study of
Piroth and Janker (2004), who analyzed data from 3 repetitions
of 9 pairs uttered by 6 German speakers from different dialect
areas. They found that the 2 Southern German speakers in
their sample preserved acoustic differences in coda duration
between underlyingly voiced/voiceless pairs, but that speakers
from the other dialect regions did not. Given the power of the
study, however, we should not necessarily be surprised that
they failed to detect a (small) effect, if it is indeed present. If
the IN effect for the Southern German speakers is in reality lar-
ger than for speakers from other dialect areas, it will be easier
to detect, all else being equal. So while we are licensed to con-
clude something about the Southern German speakers in this
study, we have not really learned anything about other speak-
ers, or about the ensemble of speakers as a whole.

As seen in Fig. 4, in mid-powered regimes power is partic-
ularly sensitive to the true effect size. One practical conse-
quence of this is that replications of the same experiment (or
subsets of data from the same experiment) could well return
a mix of significant and non-significant results, even if there
is a true effect. Similarly, different results may obtain depend-
ing on the particulars of the data analysis method.

While a mid-powered study has important drawbacks rela-
tive to a high-powered study from the perspective of power
(and Type M/S error, discussed below), the mid-power case
is important to consider because many published studies in
experimental phonetics (like other behavioral sciences) are
probably mid-powered: researchers use the smallest sample
size that seems reasonably likely to detect an effect, to mini-
mize cost and time.
3.4.3. High-power regime

Finally, we consider a design with 18 speakers, 25 items,
and 6 repetitions (i.e. close to the design of Roettger et al.
(2014), but with ni ¼ 25 instead of 24, and 6 repetitions instead
of 1). As seen by the blue line in Fig. 4, power is above the
80% mark for the majority of the range of plausible effect sizes.

� A significant result can again be interpreted as evidence of an
incomplete neutralization effect—if the true effect size were zero,
such a result would be unlikely to occur (modulo of course the pos-
sibility of Type I error).

� Unlike the low and medium-power regimes, however, here we are
also licensed to interpret a non-significant result: if there were a true
effect in this range of effect sizes, we would be surprised to not
detect it, while if the true effect size were zero, we would not be sur-
prised if we failed to find it. Therefore, in a high-powered design, we
are licensed to interpret a null result as evidence “in favor of” com-
plete neutralization—at least in the sense of, if there is an effect, we
may be confident that it is small.

Also of note is the Type M error rate of high-powered stud-
ies. For both significant and non-significant results, Type M
error remains relatively near its optimum (=1) when power is
high. If both significant and non-significant results are grouped
together, the mean degree to which the true effect size is
inflated is extremely low, even for very small true effect sizes.
This illustrates that high power not only increases our confi-
dence that we haven’t accidentally failed to reject the null,
but also our confidence in the reasonableness of our effect
size estimates. This fact has important ramifications for our
Q2: what we are licensed to conclude from a body of studies
(see Section 3.5.1 below).
3.4.4. Robustness of effect size estimates

We now turn to point 3 raised in the Introduction: the fact
that non-significant results can still give useful information
about effect size, depending to a large extent on power.

Fig. 6 shows the relationship between power and Type M
and Type S error, both conditional on significance and not
(as in Fig. 5). These plots show smooths across all simulation
runs (where one point corresponds to one set of parameters in
Table 1) for two effect sizes: a relatively large effect
ðbx ¼ �10 msÞ and a smaller effect ðbx ¼ �4 msÞ. Thus, differ-
ent values of power in each panel effectively means different
sample sizes. We can use these plots to think about what
can be inferred from different studies of the same phe-
nomenon, differing in sample size—and in particular what, if
anything, can be inferred from non-significant results.

� For the larger effect, Type S error is effectively zero when power is
at least 0.4, regardless of whether the result is statistically signifi-
cant. When both significant and non-significant results are consid-
ered, Type M error is very low (�1); for non-significant results, the
magnitude may be underestimated, but probably only by half or less
its true size.

� For the smaller effect, Type S error stays low (below about 5%) pro-
vided power is at least medium (0.5). Type M error is again very low
down to very low power (0.25), if all results are reported. Focusing
just on non-significant results, effect magnitude can again be under-
estimated, but again by only 50% or less.

� Also of note is that as power decreases, Type S error is affected
more slowly than Type M error.

These results illustrate that, practically speaking, one can
still use non-significant results to say something about (likely)
effect size, as long as power is high enough. Non-significant
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results may still give useful information about effect direction,
and to some extent effect magnitude—especially when the
true effect size is reasonably large. This holds for even
medium-powered studies, which will by definition frequently
give non-significant results.

This generalization comes with an important caveat. When
a result is not significant, the observed effect is (by the defini-
tion of significance) also likely to have been observed if the
true effect size were zero. So, what can be minimally said
about medium- to high-powered, non-significant results is that
they are consistent with both null and non-null effects. What
else one might conclude about the true effect size depends
on the researcher’s a priori belief about the true effect size,
informed by expectations based on domain knowledge or prior
work. (On this latter point, see Section 3.5.3 as well as the
paper by Nicenboim, Roettger and Vasishth, 2018.).

This caveat suggests looking more closely at what can be
concluded for different non-significant effects: what can be
concluded when p fails to cross the pre-specified a threshold,
but is low enough for the researcher to attempt interpretation of
the result (frequently resulting in turns of phrase such as “mar-
ginally significant”)? Fig. 7 shows the relationship between
power and Type M and Type S error, now across all simula-
tions ðeffect size 2 ð�2;�10Þ), with non-significant results bro-
ken down into “marginal” ð0:05 < p < 0:2Þ and p > 0:2
results.12 We see that for “marginal” results, as long as power
is not too low, the effect is almost certain to have the right sign,
while the magnitude, though likely underestimated, is not wildly
wrong (within <50% of correct value). For p > 0:2 results, Type
S and Type M error are much worse, and the observed effect is
also likely if the true effect size is zero. In this regime, then, noth-
ing can be concluded about true effect size.
3.5. Discussion

3.5.1. Interpreting a body of studies

We now turn to our Q2: what can we conclude from a collec-
tion of studies of (more or less) the same phenomenon?
Strictly speaking this is the domain of “meta-analysis”
(Cumming, 2013; Lipsey & Wilson, 2001), a methodology for
pooling the results of previous studies to determine likely
parameter values. The paper by Nicenboim, Roettger and
Vasishth (2018) conducts a meta-analysis of 14 previous stud-
ies of German incomplete neutralization, and concludes that
there is a small but real effect.

However, even in the absence of formal meta-analysis, the
considerations of power and effect size discussed above in the
context of individual studies can be used to interpret the Ger-
man incomplete neutralization literature, which is representa-
tive of many literatures in phonetics showing “mixed” results
(in terms of the significance of a parameter of interest). When
we have a mixture of significant and non-significant results,
what can we say about likely values of bx? Do we have evi-
dence for bx – 0 (IN effect), bx ¼ 0 (no IN effect), or truly con-
flicting evidence?

As the above discussion suggests, the answer depends lar-
gely on the power of the studies involved. Consider just the
case of whether or not bx is equal to 0. If all of the studies
12 Although we use p < 0:2 as a cutoff here, in reality the relationship is gradient.
concerned have high power, then those which find significant
results provide us with evidence consistent with bx – 0, while
those that find null results can be interpreted as consistent with
bx � 0. In this scenario, the results are truly conflicting,
because we have evidence that supports different, presumably
incompatible theoretical positions. If, on the other hand, the
high-powered studies find significant results, but the low-
powered studies find null results, we only have evidence that
supports bx > 0; the null results are not evidence for or against
anything.

Concerning the actual value of bx , lower-powered studies
are more likely to incorrectly estimate its magnitude, and (less
often) its sign, while higher-powered studies estimate bx more
accurately. This also plays into how to interpret an ensemble of
estimated effect sizes from different studies. For example, find-
ing a mixture of positive and negative bx in different high-
powered studies would give truly conflicting evidence on effect
direction, while observing bx > 0 in all studies except a couple
low-powered ones would be consistent with the true effect in
fact being positive.

In the case of the (German) incomplete neutralization litera-
ture, previous low- to medium-powered studies have found
effects with a consistently positive sign, but differing in magni-
tude. Those studies showing non-significant effects are low-
powered, while the one high-powered study (Roettger et al.,
2014) of which we are aware finds a significant effect of 8.6
ms. This is consistent with most studies having sufficient
power to correctly detect the sign of the (non-null) effect, but
not to accurately estimate its magnitude. Thus, a reasonable
interpretation based on the existing literature is not that there
is “mixed evidence” for incomplete neutralization, but rather
that there is a small, consistently positive effect, probably
within the range considered in our simulations (2–10 ms).
3.5.2. Simulated power is conditional on your model and data

It is important to remember that the power estimates derived
in the preceding sections are highly dependent on particular
properties of the dataset used for the simulations. In the Roett-
ger et al. data, there happens to be very little variation between
subjects and items for the particular effect of interest (vowel
duration), relative to the total variation in the data. In the lan-
guage of mixed models, this means that the random slope vari-
ances are small. Furthermore, the fact that this a fully crossed
design (all subjects produced all experimental items in both
conditions) means that subject and item variability in the inter-
cept is not confounded with the effect of interest. As a result,
power increases fairly rapidly, and as seen in Fig. 1,
medium-sized effects can be detected with a relatively small
number of subjects and items.

Whether or not this is a typical situation for experimental
phonetics is an open question. But the takeaway is that the
plots in Section 3.3 should not be read as providing estimates
for power, Type M and Type S errors for a design of so-and-so
many subjects and items; they are only valid for this particular
dataset. While the analytic approach of Westfall et al. (2014)
can provide some more generality on how power is a function
of sample size and experimental design, as previously dis-
cussed, it does not take covariates into account, which may
result in underestimated power. On the other hand, our simula-
tions only studied the power of main effects; even for identical
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designs, the power to detect interactions may be far lower
(Gelman, 2018).

Similarly, in using these results to reason about the body of
reported IN studies, we are assuming that the effect sizes and
variance components are sufficiently similar to those we have
calculated based on the Roettger et al. data that our power cal-
culations are applicable. This may not always be true, for
example if the different subject populations of different studies
have different degrees of variability (e.g. a mono-dialectal
versus multi-dialectal sample). Our general point here is
simply to stress that, while the simulation-based approach
can be highly accurate for particular designs and datasets,
the results do not automatically generalize to other designs
and datasets.

3.5.3. Type II error, precision, and uncertainty

The language and logic of Type I and Type II errors are
indelibly linked to the Neyman-Pearson decision-theoretic
paradigm of hypothesis testing, where hypotheses are
accepted or rejected when a test statistic falls below some
threshold. As argued by Fisher (1956, Ch. 4) as well as many
others, while such a procedure is undoubtably useful in certain
settings, it is not clear that it is the appropriate paradigm for
experimental scientific inquiry.13 In this regard, one might won-
der why we have devoted an entire paper to the discussion of a
concept embedded in such a framework. It is our experience that
the Neyman-Pearson hypothesis-testing paradigm, or some-
thing like it, is what is familiar to the majority of researchers in
phonetics. However, what we are ultimately advocating for is
increased attention on the precision and uncertainty of esti-
mates. Power, and Type M and Type S errors, are one way to
understand and measure precision and uncertainty.

In Bayesian approaches to statistical inference, precision
and uncertainty take on a more central role. While the core
concepts are fairly simple, both the theory and practice of
Bayesian statistics can be challenging, and we recognize that
not all researchers will have the time or inclination to explore
them fully. As we have tried to illustrate here, it is still possible
to emphasize the precision and uncertainty of parameter esti-
mates within a (frequentist) hypothesis testing framework, but
we encourage interested researchers to explore Bayesian
methods as well. McElreath (2015) provides an excellent
and accessible introduction to Bayesian statistics, with many
examples in R. Tutorials on the application of Bayesian tech-
niques from a linguistic perspective include Nicenboim and
Vasishth (2016), Sorensen, Hohenstein, and Vasishth
(2016), and Vasishth, Nicenboim, Beckman, Li and Kong (this
issue).

4. Conclusions

In this paper, we have emphasized the importance of statis-
tical power in the interpretation of phonetic data. Power calcu-
lations, along with the consideration of sign and magnitude
errors, can help inform our understanding of both a single
study, as well as a body of studies. We have seen that,
depending on power, even results which are not statistically
13 Even Neyman and Pearson themselves seem to have had their doubts as to whether
their framework was well-suited for scientific research: see e.g. the discussion in Hurlbert
and Lombardi (2009, p. 319) and references therein.
significant may nonetheless still be informative, in that they
can still provide reasonable estimates of effect sizes, including
providing evidence “for the null” in some sense.

At the same time, we have shown how low- and even
medium-powered studies can also make substantial errors in
estimating the sign and magnitude of effects, even when
accompanied by a small p-value. By taking power and effect
size errors as well as significance into account, phoneticians
are better positioned to reason more carefully about findings
of all types, not just those where p happens to be less than
0:05.

In addition, we have provided a concrete example from the
literature, including a practical demonstration of how power
and design calculations can be performed in the mixed-
model setting in which many practicing phoneticians now find
themselves working. Together with our accompanying R code
(Kirby & Sonderegger, 2018a), we hope this helps researchers
to perform their own power and design analyses.

However, while simulation is a useful tool, an appreciation
of power and effect size errors can inform our reasoning even
without it. Consider two studies with the same effect size, but
different sample sizes. If the large-sample study finds a signif-
icant effect but the small-sample study does not, this is per-
fectly consistent with there being a true effect. Simply by
giving factors such as sample size—one indicator of power—
as much weight as we do the p-value in interpreting our model
coefficients, we are in a better position to reason about the
robustness of our results.

We conclude with three practical recommendations we
believe to be beneficial for the phonetic sciences as a whole.
Again, these recommendations are in no way novel—see for
instance Wilkinson & The ASA Task Force on Statistical
Inference (1999)—but we hope that this illustration in a
phonetics context will encourage them to be employed more
consistently in our field.

1. Report all results. We strongly recommend reporting
effect size and direction in phonetic studies, regardless of sta-
tistical significance. Doing so consistently as a field will result
in more accurate estimates of the true sizes of effects across
studies—as demonstrated by the fact that Type M error uncon-
ditional on significance remains near 1 (optimal) across most
parameter values in our simulations. Researchers are already
doing this when they report the full output of their regression
analyses (including coefficient estimates and standard errors),
but it is still not infrequent to find papers which only report p-
values, or which only indicate whether p was at or below some
threshold. In isolation, p-values do not communicate scientifi-
cally useful information.

Reporting both significant and non-significant results is par-
ticularly critical for small effects such as incomplete neutraliza-
tion, where power of any given study is unlikely to be high. As a
result, the effect size of significant results is likely to be inflated
(high Type M error). This means that if only statistically signif-
icant effects are published and discussed, the problem gets
worse, because the effect size across a body of studies will
tend to be inflated as a whole (the “file drawer effect”: Button
et al., 2013; Rosenthal, 1979; Simonsohn, Nelson, &
Simmons, 2014). Of course, non-significant findings always
have a plausible alternative explanation—this is the definition
of significance—so bringing them into interpretation is trickier.
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Nevertheless, in general our understanding of phenomena
such as incomplete neutralization is enriched by having a body
of studies to interpret.

However, we emphasize that we are not recommending that
reviewers and editors simply accept any and all results, or
judge them all equally. This leads us to our second
recommendation:

2. Conduct high-powered studies. Our simulations also
underscore the importance of conducting high-powered stud-
ies whenever possible, and taking power into account when
interpreting statistical analyses. Since in phonetics, we are
generally interested in effect sizes and directions, and since
data collection and analysis can often be laborious and time-
consuming, it is especially important that we be confident of
our ability to detect effects of a particular size before we begin
data collection. Another way to think of this is to aim to conduct
studies with high precision, i.e. where the uncertainty sur-
rounding the size and magnitude of the estimates is minimized
(see Section 3.5.3).

For experimental studies, it is often possible to increase
power/precision by increasing sample size, both in terms of
subjects as well as in terms of items. While we have not con-
ducted a formal survey, our impression is that, when compared
to fields such as medicine and ecology, phonetic studies often
have very small sample sizes. An opportunistic review of
seven papers from the November 2017 issue of this journal
containing statistical analyses of acoustic speech production
data found the number of participants to range from 11 to 39;
within experimental groups, however, sample sizes ranged
from 24 to just 6 speakers. Similarly, the first author has pub-
lished studies with groups of 6, 10, and 20 participants. Our
general impression is that such sample sizes are reasonably
representative. As shown in Sections 2.4.1 and 3.4.3, how-
ever, even a nominally high-powered study can still produce
worryingly uncertain estimates if the true effect is small, and
a small effect is highly unlikely to be accurately estimated with
just 6 participants per group—at least for effects the size of
those considered in our case study. Similarly, increasing the
number of repetitions is generally no replacement for including
more unique items (Winter, 2015). It is therefore important to
think carefully about the interaction of sample size and known
or expected effect size when planning and interpreting studies.
For reasonably large effects, 24 participants may be perfectly
adequate, but when smaller effects are of interest, many more
participants may be required.

Corpus studies, which are becoming ever more prevalent,
present an interesting case. We suspect that power for detect-
ing any given effect is often not high in corpus studies, for sev-
eral reasons: the large number of predictors being modeled as
affecting a dependent variable, high variability in the data
(which lowers power), and inherently limited sample size. In
this setting, applying commonly recommended analysis tech-
niques (such as fitting the maximal random-effect structure)
will minimize Type I error, but can dramatically lower power
(Matuschek et al., 2017). Null results in this setting will there-
fore frequently be uninterpretable, but can under some circum-
stances still give information about effect size.

3. Conduct direct replications. Our final recommendation is
to encourage direct replications of important studies, and for
journals to publish them. This might take the form of a
pre-registered study, such as that promoted by the Center for
Open Science’s Registered Reports concept, but a replication
could also form a part of a larger study that includes novel
experimental results. As the discussion in Section 3.4 hope-
fully made clear, there can be substantial sign and magnitude
errors in estimating effect size even when p-values are very
low. Similarly, the effect size found from a single high-
powered study should not be assumed to be accurate or infal-
lible; direct replications should always be regarded as the gold
standard.
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Appendix A. Supplementary data

Code and data files for carrying out all analyses in this
paper, including worked examples, are archived as an Open
Science Foundation project at https://osf.io/e4g5t (Kirby &
Sonderegger, 2018a).

Figs. 8, 9, 10 show power, Type M error, and Type S error
estimated via simulation with nsims ¼ 1500 from the Roettger
et al. data, for each combination of parameter values shown
in Table 1.

Supplementary data associated with this article can be
found, in the online version, at https://doi.org/10.1016/
j.wocn.2018.05.005.
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